Researchers have discovered a new type of glass material that may be used as an electrode in lithium-ion batteries to almost double a smartphone’s battery life.
A material discovered by ETH Zurich researchers led by Dr Semih Afyon and Reinhard Nesper may have the potential to double battery capacity. Researchers are using the Vanadate-borate glass as a cathode material.
It is made of vanadium oxide (V2O5) and lithium-borate (LiBO2) precursors, and was coated with reduced graphite oxide (RGO) to enhance the electrode properties of the material. They used a vanadium-based compound because vanadium is a transition metal with various oxidation states, which can be exploited to reach higher capacities. Borate is a glass former; that’s why the borate compounds were used, and the resulting glass compound is a new kind of material, neither V2O5 nor LiBO2 at the end.
The scientists melted the powder at 900 degrees Celsius and cooled the melt as quickly as possible to form glass. The resulting paper-thin sheets were then crushed into a powder before use, as this increases their surface area and creates pore space. One major advantage of vanadate-borate glass is that it is simple and inexpensive to manufacture. This is expected to increase the chance of finding an industrial application.